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Abstract – The Monte Carlo Transport Project at Lawrence Livermore National Laboratory develops two
Monte Carlo transport codes used in production by a sizable internal user community. Mercury is a Monte
Carlo particle transport code used for modeling the interaction of neutrons, gammas, and light ions with
a material. Imp is an implicit Monte Carlo thermal x-ray photon transport code used for modeling the
interaction of x-ray photons with a material. This paper describes the two codes and highlights recent
developments.
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1. Introduction

What is the nuclear reaction energy deposited in a material irradiated by neutrons? What is the intensity of soft
x-rays in a laser fusion experiment? These are examples of questions that scientists at Lawrence Livermore National
Laboratory (LLNL) answer by running Monte Carlo (MC) transport simulations. The former may be answered by
running Mercury, which is a MC particle transport code used for modeling the interaction of neutrons, gammas, and
light ions with a material [1]. The latter may be answered by running Imp, which is an implicit Monte Carlo (IMC) [2]
thermal x-ray photon transport code [3] used for modeling the interaction of x-ray photons with a material.

Development of the Mercury Monte Carlo particle transport code was started by Richard “Spike” Procassini in
the early 2000s [1]. A series of conference overview papers have documented the ongoing development of Mercury over
the last approximately twenty years [4, 5, 6, 7, 8, 9, 10]. The Imp IMC thermal x-ray photon transport code [3] was
developed starting in late 2015 using infrastructure shared with the Mercury code, a development decision that was
largely motivated by advanced computing architecture considerations.

In this paper, we review the basic physics models in the Mercury and Imp codes, describe some of the important
features of the two codes, and describe the programming models used to target modern diverse computing architectures
in Section 2. We next review in Section 3 the recent history of code development in the two codes, with a focus on
use of new nuclear data formats in Mercury, motivations for the development of the Imp IMC code, and ongoing work
to port the codes to graphics processing unit computing architectures. We conclude with a discussion and suggestions
for future work in Section 4.

2. Code physics models, features, and programming models

The Mercury Monte Carlo particle transport code and the Imp thermal x-ray photon transport code are developed
using shared infrastructure. The codes consist of about 240,000 lines of uncommented C++ source code (370,000 with
comments), 80% of which is shared, 15% of which is Mercury-specific, and 5% of which is Imp-specific.
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2.1. Mercury neutral particle physics models

Mercury can track two neutral particle types, neutrons and gamma photons. Mercury solves the neutral particle
Boltzmann transport equation [11, 12, 13, 14],
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where r = (x, y, z) is the position of the particle, Ω = (Ωx,Ωy,Ωz) is the direction the particle travels, E is the
particle’s energy, and t is the time. The quantity Ψ, the angular flux, is the product of the phase space number density
n(r,Ω, E, t) and the particle speed v, so Ψ = vn, and its dimensions may be written as: # / (cm2 MeV sr s), which
is convenient for computing reaction rates in the material. Σt(r, E) is the macroscopic total nuclear reaction cross
section, Σf (r, E) is the macroscopic fission cross section, and ν(E) is the average number of neutrons released per
fission. The quantity χ(E) is the fission spectrum. Finally, S(r,Ω, E, t) is an external source. Equation (1) requires
appropriate initial and boundary conditions.

Equation (1) is a general form of the Boltzmann transport equation, and not all terms are present in all problems
and for all particle types. For example, the temporal derivative is omitted for steady-state problems. In addition to
the fully time-dependent form of the transport equation above, the transport equation can take on some special forms
such as for k-eigenvalue calculations.

Mercury can run steady-state or time-dependent calculations. Mercury can additionally solve for the k-eigenvalue
or α-eigenvalue of the system as well as the probability of initiation or extinction [15, 16].

2.2. Mercury charged particle physics models

Mercury can also track five charged particle types: protons, deuterons, tritons, alphas, and helium-3 particles.
Unlike neutral particles, charged particles do not lose energy only in discrete collisions, because charged particles
continuously interact with the electrons and ions of the medium in which they are traveling. We employ a continuous
slowing-down approximation to calculate the effect of the interactions of the charged particles with the medium. The
energy lost by charged particles due to this continuous interaction often exceeds the energy lost through discrete
nuclear reactions. In order to calculate the slowing down rate and distance to thermalization, one needs to calculate
the Coulomb logarithm and additional parameters required for the slowing down model. Mercury implements thirteen
different slowing down models.

When the energy of a charged particle has decreased until it is approximately that of the surrounding medium,
the charged particle is considered “thermalized” into the background medium. Whereas neutral particles only lose
energy in collisions, which are a tracked event, charged particles lose energy continuously when they move, and can
therefore cross an energy group boundary without a collision event. Neutral particles already have an event that
marks the occurrence of an energy boundary crossing - the collision that results in the energy loss. Since the energy
loss for charged particles is continuous, the energy boundary crossing itself needs to be an event so that it can be
properly handled. The calculation of the distance to the crossing of the lower energy bound mirrors how the distance
to thermalization is calculated, except with a different final energy under consideration, Elow instead of Ethermal, where
Elow is the energy of the lower boundary of the particle’s current energy group.

2.3. Imp photon physics models

The one particle type that Imp tracks, the IMC photon, is also a neutral particle type. Imp solves a neutral particle
Boltzmann transport equation coupled to a material energy balance equation [17]:
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where we have omitted scattering and external sources in equation (2a). The particle speed v and energy E in
equation (1) have been replaced with the photon speed c (the speed of light in a vacuum) and photon frequency ν.
Instead of solving for Ψ, we solve for I, which is the photon intensity. The photon intensity is the product of the phase
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space number density n(r,Ω, ν, t) and the photon speed c and energy hν, so I = chνn, and its dimensions may be
written as: energy / (cm2 Hz sr s), which is convenient for computing energy deposition rates in the material. The
quantity T is the material temperature, σa is the absorption opacity, and B is Planck’s function,

B(ν, T ) =
2hν3

c2
1

exp
(
hν
kT

)
− 1

, (3)

where h is Planck’s constant and k is Boltzmann’s constant. The quantity Em in equation (2b) is the material energy
density, ρ is the mass density of the material, and cv is the specific heat capacity of the material. Equation (2a) requires
appropriate initial and boundary conditions. Equation (2b) requires an appropriate initial condition.

The system of equations (2a) and (2b) is nonlinear due to the Planck emission term B. We refer to Imp as an IMC
code because we use the standard implicit Monte Carlo multigroup algorithm for thermal x-ray photon transport to
linearize and solve the system [2, 18]. The linearization produces an “effective” scattering term. If an IMC photon
undergoes an effective scatter, then the physical photon to which the IMC photon corresponds was absorbed and
reemitted within the time step. IMC photons traversing optically thick, highly-absorbing media are very expensive to
track because they undergo a large number of effective scatters. Imp uses random walk acceleration [19] to ameliorate
this problem as well as source tilt to ameliorate teleportation error [18].

2.4. Code features

Some of the important general features shared by both Mercury and Imp are a powerful input syntax, an embedded
python interpreter used for input parsing and code steering, support for both combinatorial geometry (constructive
solid geometry) and meshes, a flexible user-defined tally infrastructure, support for many types of particle sources and
variance reduction techniques, checkpoint/restart, domain decomposition, dynamic load balancing, writing graphics
for visualization with VisIt, raytrace geometry rendering, and the ability to run on central processing units (CPUs) as
well as graphics processing units (GPUs). Mercury additionally supports the following nuclear reaction cross section
features: multigroup or continuous energy, heating, photonuclear, thermal neutron scatter law, and interprocess shared
memory.

Most code features have a default behavior which matches the most common use case. A question often asked by
new users exemplifies default behavior: what does Mercury do if a nuclear reaction produces a particle type which
Mercury is not tracking (because the user does not want to track that particle type) or cannot track (because the
particle type is not one of the seven trackable particle types)? Mercury deposits the particle’s energy in the material
at the location of the reaction1. The user can override this default behavior so that the energy is discarded. The user
would create an Escape functional triggered on the Creation Collision particle event, which can be achieved by
adding the lines in listing 1 to the input file2.

In addition to reading an input file, the two codes accept environment variables for certain behaviors which cannot
be achieved without them. The codes also accept a few command line arguments. One of the most useful is -def
key=value which uses the embedded python interpreter to evaluate value and assign it to key. Users can combine
this with the mc ifundef input syntax as in listing 2 to create defaults for user-defined variables in input files.

Listing 1. Leak untracked particles

tally
tal Leak

event
Creation_Collision

end_event
functional

type Escape
end_functional

end_tal
end_tally

Listing 2. Command line defines

$ head -1 foo.inp
mc_ifundef photons {1e6}
$ imp foo.inp
$ imp foo.inp -def photons =1e7
$ imp foo.inp -def photons =1e8

2.5. Programming models

Mercury and Imp run in production on x86 servers using distributed- and shared-memory parallelism provided
by MPI+OpenMP. We also use the MPI+OpenMP programming model to target ARM, POWER, and other CPU

1 Unless the particle is a neutrino, in which case the energy is discarded.
2 Listing 1 paraphrases the actual input. We omitted the response...end response block.
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architectures. We target the Nvidia V100 GPU architecture, which Nvidia launched in 2017 and LLNL purchased for
the Sierra supercomputer [20], using MPI+CUDA, and we have observed speedups of 7.6x for Mercury neutronics and
5.8x for Imp photonics in node-to-node comparisons with x86 servers of similar vintage [21]. Finally, we target the
AMD MI300 accelerated processing unit (APU) architecture, which AMD launched in 2024 and LLNL purchased for
the El Capitan supercomputer [22], using MPI+HIP/ROCm. We write HIP/ROCm to indicate that we use ROCm
underneath HIP.

3. Recent history of code development

Figure 1 shows a timeline of selected code development events from the past fifteen years. We wrote the first line
of Mercury source code more than twenty years ago, whereas we began development of the Imp IMC code less than
ten years ago in late 2015. The events in the timeline can be partitioned into three topics: i) use of the Generalized
Nuclear Database Structure (GNDS) nuclear data file format in Mercury, ii) development of the Imp IMC code, and
iii) porting production MC code to GPUs. Sections 3.1 to 3.3 describe these three topics, to which we have dedicated
much of our code development effort in the last ten years.

Due to space limitations, we have focused on the development activities described above. Omitted from the timeline
are events related to transitioning our source code version control system from svn to git, transitioning our embedded
python interpreter from python 2 to python 3, and Mercury and Imp physics capability development activities related
to transport in stochastic media [23, 3, 24, 25], capabilities in the two codes that are consistent as a result of the
shared infrastructure.

2010 2015 2020 2025

Started adding GNDS to Mercury

Started writing Imp IMC code

Started porting Mercury and Imp to GPUs

First Imp GPU speedup

First Mercury GPU speedup

Use GNDS in Mercury by default

Use GPUs by default

Figure 1. Recent history of Mercury and Imp code development. All events below the axis involve graphics processing
units.

3.1. Using the Generalized Nuclear Database Structure (GNDS)

Mercury uses a nuclear data library, along with random numbers, to determine whether a MC particle will undergo
a collision in a material, which isotope the particle collides with, which reaction occurs, and then the types, quantities,
energies, and directions of outgoing particles. Mercury supports two nuclear data formats: the legacy Evaluated Nuclear
Data Library (ENDL) format [26], which was developed at LLNL [27] before the more widely adopted Evaluated
Nuclear Data File (ENDF) format [28], and the Generalized Nuclear Database Structure (GNDS) format [29]. The
GNDS specification [30] is an open standard maintained and publicly distributed by the Nuclear Energy Agency (NEA)
of the Organisation for Economic Co-operation and Development (OECD).

Mercury accesses nuclear data through an abstraction layer that we call a collision library. A legacy collision
library [31] allows Mercury to use nuclear data in the legacy ENDL format. For the GNDS format, we use the Monte
Carlo General Interaction Data Interface (MCGIDI) collision library, which uses the GIDI library to read GNDS files
into memory. The data flow is thus: Mercury ← MCGIDI ← GIDI ← GNDS. The OECD NEA publicly distributes
the GNDS specification [30], and LLNL publicly distributes the source code for both GIDI and MCGIDI, along with
supporting libraries, in a package called GIDI+ (pronounced “gidiplus”) [32]. The GIDI/MCGIDI interface is also used
by the Geant particle simulation code which calls GIDI and MCGIDI to access GNDS-formatted nuclear data [33].

Issues that we encountered with the ENDL and ENDF formats [34] motivated us to undertake the effort to use
GNDS in Mercury [35]. When we decided to use GNDS we also decided not to port our legacy collision library to
advanced computing architectures, which means that Mercury calculations on GPUs always use GIDI+.

4



M. Pozulp et al.: Status of Mercury and Imp

3.2. Development of the Imp IMC code

The development of Imp was strongly influenced by the algorithmic implementations demonstrated in the Kull IMC
photon transport capability [36], which is itself a production IMC code. So why develop Imp? We realized that most
Mercury code was infrastructure, not physics, and this is evidenced today by the fact that 80% of our Mercury-and-Imp
codebase is shared by the two codes. Shared code enables

1. GPU, APU, and other porting efforts to benefit both Mercury and Imp,
2. Mercury and Imp users to enjoy a consistent feature set (see section 2.4), and
3. project staff to support users by learning one codebase instead of two.

A feature exemplifying the second point is our dynamic load balancer. We completed our dynamic load balancer
implementation in Mercury over ten years ago [37, 38, 39]. A couple years later, on the first day that we started
writing Imp, we could already run domain-decomposed IMC calculations with a verified and robust dynamic load
balancer.

We verified and tested Imp by running calculations and comparing to analytic solutions, benchmark solutions, and
Kull IMC package calculations [3]. One interesting project that we have recently undertaken in Imp involves modeling
the Dante x-ray spectrometer [40] using next-event estimators [41]. Another project involves tracking IMC particles on
curved high-order finite element meshes and tallying polynomial photon energy deposition which varies within a mesh
element, instead of piecewise constant energy deposition which is constant within a mesh element. This capability
will enable high-order radiation-hydrodynamics calculations in which we run Imp IMC photon transport on the same
MFEM mesh [42] used by the Blast hydrodynamics package [43] from the MAPP project [44].

Finally, we are also researching approaches to accelerate calculations involving high amounts of effective scattering.
Imp’s random walk acceleration [19] can provide some speedup. Acceleration approaches such as Implicit Monte Carlo
Diffusion (IMD) [45] and Discrete Diffusion Monte Carlo (DDMC) [46] have demonstrated significantly larger speedups.
We are beginning development activities aimed at implementing such acceleration approaches.

3.3. Porting production MC code to GPUs

There is one GPU architecture and one APU architecture on which we run Mercury and Imp. They are the Nvidia
V100 GPU and the AMD MI300 APU, which are the architectures in the LLNL Sierra and El Capitan supercomputers,
respectively [20, 22]. Before we started porting our production MC codes to the V100 GPU, which launched in 2017, we
spent several years writing small MC programs in order to test out the programming models then available [47, 48, 10].
Even with the preparation provided by those experiences, we found porting the Mercury and Imp production codes
to the V100 to be challenging. We invested significant effort from 2018 to 2023 to improve our Mercury neutronics
speedup from 0.47x to 7.61x and our Imp photonics speedup from 1.45x to 5.81x on V100 GPUs [49, 21]. We have
also researched hybrid CPU + GPU load balancing approaches on heterogeneous computing architectures for both
fully-replicated and domain-decomposed meshes [50, 51, 52]. We have just begun porting to MI300 APUs, which is an
architecture that AMD released this year.

The most significant obstacle we faced in our production code GPU porting effort was large kernels. Our largest
kernel has about 100,000 lines of reachable code. When we use the nvcc compiler from the Nvidia toolchain to compile
this kernel for the V100, the compiler emits the maximum 255 registers per thread permitted by the V100 instruction
set, which limits the theoretical occupancy of the kernel to 12.5% and achieved occupancy to about 10%. Occupancy
on Nvidia GPUs is the percentage of the maximum number of warps that can run simultaneously on an SM. Low
occupancy prevents the latency hiding that we need for our calculations to become memory-bandwidth bound. We
attempted to solve this problem by splitting our large kernel into smaller kernels by implementing event-based particle
tracking, which runs faster as long as the kernel launch latencies are small. We recently implemented a “persistent
threads” [53] variation of history-based tracking and observed higher throughput at smaller problem sizes, but that
approach to date has not increased the maximum throughput.

We were surprised by the performance impact of some language features. One example is separate compilation of
device code, the impact of which we were able to quantify by using device code link time optimization (LTO) in the
Nvidia toolchain and observing a 36% speedup at the cost of increased link time [21]. Another surprise was the impact
of language features which do not allow the maximum stack size of a kernel to be determined until runtime. Examples
in our codebase include recursion, virtual functions, and function pointers. We are in the process of refactoring to
remove these features from device code.

4. Conclusions and future work

The production Mercury and Imp Monte Carlo transport codes have a significant development history: Mercury
is early in its third decade of development, and Imp is approaching the start of its second. During this time, a sizable
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internal user community at LLNL has used the two codes in production to answer numerous questions. The physics
models, features, and programming models that we have implemented in the codes and described in this paper could
remain useful for yet more decades.

The three recent code development topics described in this paper continue to occupy a substantial amount of our
code development effort today. The sustained effort that we have invested in these areas is leading to higher-fidelity
physics, additional users, and faster calculations.
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